Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1292347, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379900

RESUMO

Background: The clinical characteristics and risk factors of infusion reactions (IRs) are inadequately described in clinical practice due to underreported cases. In the present study, we reported the current status of IRs based on an in-hospital pharmacovigilance database of a tertiary care hospital. Methods: Our study conducted a retrospective analysis of drug-induced IRs recorded at an in-hospital pharmacovigilance center between January 2015 to December 2019. The descriptive statistical analysis encompassed main causative agents, clinical manifestations, organ/system involvement and outcome. The severity of IRs was assessed with reference to the CTCAE version 5.0 criteria and we investigated risk factors associated with severe IRs. Results: During the study period, a total of 505 cases of inpatient drug-induced IRs were detected, of which 79.2% (400 cases) were classified as general IRs and 20.8% (105 cases) were categorized as severe IRs. The primary drugs responsible for these reactions were antibiotics (23%, 116 cases), with piperacillin sodium-sulbactam sodium being the most prevalent, followed by antineoplastic agents (18.4%, 93 cases) and traditional Chinese medicine injections (TCMIs) (12.9%, 65 cases). The administration of cefoperazone - sulbactam, mannatide, Shenqi Fuzheng, elemene, and diterpene ginkgolides meglumine resulted in a higher incidence of critical IRs. Among all cases of IRs, 43.2%, 41.2%, and 23.4% showed signs and symptoms of circulation, skin mucosa, and respiratory organs/systems, respectively. 9.1% of cases experienced systemic damage, while 7.1% and 5.9% of cases reported neurological and gastrointestinal related adverse reactions, respectively. The multivariate analysis revealed that alcohol consumption (OR = 2.389%, 95% CI 1.141-5.002, p = 0.021), age over 65 (OR = 1.814%, 95% CI 1.052-3.127, p = 0.032) and the utilization of contrast media (OR = 4.072%, 95% CI 1.903-8.713, p < 0.001) were identified as risk factors for the development of severe IRs. Conclusion: Understanding the clinical characteristics of IRs helps to implement effective pharmaceutical monitoring and appropriate preventive measures for susceptible populations with risk factors.

2.
Inflammation ; 41(1): 183-192, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29019091

RESUMO

Acute lung injury (ALI) is a life-threatening syndrome which causes a high mortality rate worldwide. In traditional medicine, lots of aromatic plants-such as some Thymus species-are used for treatment of various lung diseases including pertussis, bronchitis, and asthma. Thymol, one of the primary active constituent derived from Thymus vulgaris (thyme), has been reported to exhibit potent anti-microbial, anti-oxidant, and anti-inflammatory activities in vivo and in vitro. The present study aims to investigate the protective effects of thymol in lipopolysaccharide (LPS)-induced lung injury mice model. In LPS-challenged mice, treatment with thymol (100 mg/kg) before or after LPS challenge significantly improved pathological changes in lung tissues. Thymol also inhibited the LPS-induced inflammatory cells influx, TNF-α and IL-6 releases, and protein concentration in bronchoalveolar lavage fluid (BALF). Additionally, thymol markedly inhibited LPS-induced elevation of MDA and MPO levels, as well as reduction of SOD activity. Further study demonstrated that thymol effectively inhibited the NF-κB activation in the lung. Taken together, these results suggested that thymol might be useful in the therapy of acute lung injury.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Anti-Inflamatórios/farmacologia , Lipopolissacarídeos , Pulmão/efeitos dos fármacos , Timol/farmacologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Líquido da Lavagem Broncoalveolar/química , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Malondialdeído/metabolismo , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Pharm Biol ; 54(12): 3211-3216, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27569254

RESUMO

CONTEXT: Standardized myrtol, an essential oil containing primarily cineole, limonene and α-pinene, has been used for treating nasosinusitis, bronchitis and chronic obstructive pulmonary disease (COPD). OBJECTIVE: To investigate the effects of standardized myrtol in a model of acute lung injury (ALI) induced by lipopolysaccharides (LPS). MATERIALS AND METHODS: Male BALB/c mice were treated with standardized myrtol for 1.5 h prior to exposure of atomized LPS. Six hours after LPS challenge, lung injury was determined by the neutrophil recruitment, cytokine levels and total protein concentration in the bronchoalveolar lavage fluid (BALF) and myeloperoxidase (MPO) activity in the lung tissue. Additionally, pathological changes and NF-κB activation in the lung were examined by haematoxylin and eosin staining and western blot, respectively. RESULTS: In LPS-challenged mice, standardized myrtol at a dose of 1200 mg/kg significantly inhibited the neutrophile counts (from 820.97 ± 142.44 to 280.42 ± 65.45, 103/mL), protein concentration (from 0.331 ± 0.02 to 0.183 ± 0.01, mg/mL) and inflammatory cytokines level (TNF-α: from 6072.70 ± 748.40 to 2317.70 ± 500.14, ng/mL; IL-6: from 1184.85 ± 143.58 to 509.57 ± 133.03, ng/mL) in BALF. Standardized myrtol also attenuated LPS-induced MPO activity (from 0.82 ± 0.04 to 0.48 ± 0.06, U/g) and pathological changes (lung injury score: from 11.67 ± 0.33 to 7.83 ± 0.79) in the lung. Further study demonstrated that standardized myrtol prevented LPS-induced NF-κB activation in lung tissues. DISCUSSION AND CONCLUSION: Together, these data suggest that standardized myrtol has the potential to protect against LPS-induced airway inflammation in a model of ALI.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/prevenção & controle , Lipopolissacarídeos/toxicidade , Monoterpenos/uso terapêutico , Lesão Pulmonar Aguda/metabolismo , Animais , Combinação de Medicamentos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Monoterpenos/farmacologia
4.
Biol Pharm Bull ; 36(3): 399-406, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23318249

RESUMO

Mollugin, a kind of naphthohydroquinone, is a major constituent isolated from Rubia cordifolia L. and demonstrated to possess anti-inflammatory activity in recent reports. However, the effects and mechanism of action of mollugin in inflammation have not been fully defined. The present study was therefore designed to investigate whether mollugin suppresses the inflammatory response in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Mollugin attenuated the LPS-induced expression of nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin (IL)-1ß and IL-6 but augmented the expression of tumor necrosis factor (TNF)-α. Mollugin did not inhibit the degradation of inhibitory kappa B (IκB)-α or the nuclear translocation of p65 nuclear factor-kappa B (NF-κB) but rather enhanced the phosphorylation of p65 subunits evoked by LPS. Mollugin did not inhibit the phosphorylation of extracellular-signal-related kinase (ERK) 1/2, p38, and c-Jun N-terminal kinase (JNK) 1/2 either. Mollugin significantly reduced the LPS-mediated phosphorylation of Janus kinase (JAK) 2, signal transducers and activators of transcription (STAT) 1 and STAT3. Molecular docking analysis showed that mollugin binds to JAK2 in a manner similar to that of AG490, a specific JAK2 inhibitor. We conclude that mollugin may be a JAK2 inhibitor and inhibits LPS-induced inflammatory responses by blocking the activation of the JAK-STAT pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Janus Quinase 2/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Piranos/farmacologia , Fator de Transcrição STAT1/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Células Cultivadas , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Janus Quinase 2/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo
5.
Phytother Res ; 26(9): 1320-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22294521

RESUMO

Myrislignan is a new kind of lignan isolated from Myristica fragrans Houtt. Its antiinflammatory effects have not yet been reported. In the present study, the antiinflammatory effects and the underlying mechanisms of myrislignan in lipopolysaccharide (LPS)-induced inflammation in murine RAW 264.7 macrophage cells were investigated. Myrislignan significantly inhibited LPS-induced production of nitric oxide (NO) in a dose-dependent manner. It inhibited mRNA expression and release of interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α). This compound significantly inhibited mRNA and protein expressions of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) dose-dependently in LPS-stimulated macrophage cells. Further study showed that myrislignan decreased the cytoplasmic loss of inhibitor κB-α (IκB-α) protein and the translocation of NF-κB from cytoplasm to the nucleus. Our results suggest that myrislignan may exert its antiinflammatory effects in LPS-stimulated macrophages cells by inhibiting the NF-κB signalling pathway activation.


Assuntos
Anti-Inflamatórios/farmacologia , Lignanas/farmacologia , Macrófagos/efeitos dos fármacos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Proteínas I-kappa B/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos , Camundongos , Inibidor de NF-kappaB alfa , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Inflammation ; 35(3): 967-77, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22083490

RESUMO

Praeruptorin C, D, and E (PC, PD, and PE) are three pyranocoumarins isolated from the dried root of Peucedanum praeruptorum Dunn of Umbelliferae. In the present study, we investigated the anti-inflammatory effect of these compounds in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Pyranocoumarins significantly inhibited LPS-induced production of nitric oxide, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). The mRNA and protein expressions of inducible nitric oxide synthase, IL-6, and TNF-α were also suppressed by these compounds. Both PD and PE exhibited greater anti-inflammatory activities than PC. Further study showed that pyranocoumarins suppressed the cytoplasmic loss of inhibitor κB-α protein and inhibited the translocation of NF-κB from cytoplasm to nucleus. In addition, pyranocoumarins suppressed LPS-induced STAT3 tyrosine phosphorylation. Taken together, the results suggest that pyranocoumarins may exert anti-inflammatory effects in LPS-stimulated RAW 264.7 macrophages through the inhibition of NF-κB and STAT3 activation.


Assuntos
Inflamação/tratamento farmacológico , Macrófagos/imunologia , NF-kappa B/metabolismo , Piranocumarinas/farmacologia , Fator de Transcrição STAT3/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Apiaceae , Linhagem Celular , Cumarínicos/farmacologia , Quinase I-kappa B/metabolismo , Mediadores da Inflamação , Interleucina-6/biossíntese , Interleucina-6/genética , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
7.
Phytother Res ; 25(4): 550-6, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20842678

RESUMO

Praeruptorin A (PA) is a pyranocoumarin compound isolated from the dried root of Peucedanum praeruptorum Dunn (Umbelliferae). However, the antiinflammatory effect of PA has not been reported. The present study investigated the antiinflammatory effect of PA in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. PA significantly inhibited the LPS-induced production of nitric oxide (NO), interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). The mRNA and protein expressions of inducible nitric oxide synthase (iNOS), IL-1ß and TNF-α were also suppressed by this compound. Further study showed that PA decreased the cytoplasmic loss of inhibitor κB-α (IκB-α) protein and inhibited the translocation of NF-κB from cytoplasm to nucleus. Taken together, the results suggest that PA may exert antiinflammatory effects in vitro in LPS-stimulated RAW 264.7 macrophages through inhibition of NF-κB signal pathway activation.


Assuntos
Cumarínicos/farmacologia , Inflamação/prevenção & controle , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Animais , Sequência de Bases , Western Blotting , Linhagem Celular , Primers do DNA , Imunofluorescência , Inflamação/metabolismo , Interleucina-1/genética , Interleucina-1/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA